Unwinding of nucleic acids by HCV NS3 helicase is sensitive to the structure of the duplex.
نویسندگان
چکیده
Hepatitis C virus (HCV) helicase, non-structural protein 3 (NS3), is proposed to aid in HCV genome replication and is considered a target for inhibition of HCV. In order to investigate the substrate requirements for nucleic acid unwinding by NS3, substrates were prepared by annealing a 30mer oligonucleotide to a 15mer. The resulting 15 bp duplex contained a single-stranded DNA overhang of 15 nt referred to as the bound strand. Other substrates were prepared in which the 15mer DNA was replaced by a strand of peptide nucleic acid (PNA). The PNA-DNA substrate was unwound by NS3, but the observed rate of strand separation was at least 25-fold slower than for the equivalent DNA-DNA substrate. Binding of NS3 to the PNA-DNA substrate was similar to the DNA-DNA substrate, due to the fact that NS3 initially binds to the single-stranded overhang, which was identical in each substrate. A PNA-RNA substrate was not unwound by NS3 under similar conditions. In contrast, morpholino-DNA and phosphorothioate-DNA substrates were utilized as efficiently by NS3 as DNA-DNA substrates. These results indicate that the PNA-DNA and PNA-RNA heteroduplexes adopt structures that are unfavorable for unwinding by NS3, suggesting that the unwinding activity of NS3 is sensitive to the structure of the duplex.
منابع مشابه
Fuel specificity of the hepatitis C virus NS3 helicase.
The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of h...
متن کاملHelicase from hepatitis C virus, energetics of DNA binding.
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The gl...
متن کاملCoupling translocation with nucleic acid unwinding by NS3 helicase.
We present a semiquantitative model for translocation and unwinding activities of monomeric nonstructural protein 3 (NS3) helicase. The model is based on structural, biochemical, and single-molecule measurements. The model predicts that the NS3 helicase actively unwinds duplex by reducing more than 50% the free energy that stabilizes base pairing/stacking. The unwinding activity slows the movem...
متن کاملCloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کاملEnhanced nucleic acid binding to ATP-bound hepatitis C virus NS3 helicase at low pH activates RNA unwinding.
The molecular basis of the low-pH activation of the helicase encoded by the hepatitis C virus (HCV) was examined using either a full-length NS3 protein/NS4A cofactor complex or truncated NS3 proteins lacking the protease domain, which were isolated from three different viral genotypes. All proteins unwound RNA and DNA best at pH 6.5, which demonstrate that conserved NS3 helicase domain amino ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 29 2 شماره
صفحات -
تاریخ انتشار 2001